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Vector-valued Choquet-Deny theorem,
renewal equation and self-similar measures

by

KA-3ING LLAU (Pittsburgh, Penn.),
JIANRONG WANG (The Woodlands, Tex.)
and CHO-HO CHU (London)

Abstract. The Choquet-Deny theorem and Deny’s theorem are extended to the
vector-valued case. They are applied to give a simple nonprobabilistic proof of the vector-
valued renewal theorem, which is used to study the LP-dimension, the LP-density and the
Fourier transformation of vector-valued self-similar measures. The results answer some
questions raised by Strichartz,

1. Introduction. A self-similar measure v is an invariant measure de-
fined by the equation
b
V= Z wivo 8L,

i==l
where the w;’s are probability weights and the S;’s are contractive simili-
tudes (see [H]). In deriving the L2-dimension and estimating the L2-density
of such measures, two of the present authors reduced the above invariance
to the well known renewal equation on [0,00) (see [Fe]):

(L1) f(@) = frup(e)+h(z), =20

where f is a bounded continuous function, ;4 is a probability measure and A is
an “error term* (see [L1], [LW], where the L*-density and the L?-dimension
are called the mean quadratic variation (m.q.v.) and the m.q.v. index in-
stead). Moreover, by combining a Tauberian theorem and the solution of
the renewal equation, they showed that certain quadratic averages (which
depend on the L?-dimension) of the Fourier transformation of the above
self-similar measures v are asymptotically multiplicatively periodic.- This -
property was first discovered by Strichartz [Strl, 2]. The renewal equation
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2 K. 8. Lau et al

was also used by Lalley [La] to calculaté the packing dimension of some
self-similar fractals in a different setting.

More recently, Strichartz [Str3] made use of the directed multigraph
([CM], [EMY]) set up and introduced vector-valued self-similar and self-confor-
mal measures. In the calculation of the LP-dimension and LP-density he left
open the question of asymptotic behavior of such measures and of their
Fourier transformation because the notions of solution of the vector-valued
renewal equation and of its asymptotic behavior have vet to be formulated.

In [Fe] the scalar-valued renewal equation (1.1) is studied through the
homogeneous convolution equation

flz) = f*u(=),

The equation has been investigated for a long time and different methods
have been used. Schwartz ([Sch], [K]) first characterized the continuous (not
necessarily bounded) solutions f, where y is assumed to have compact sup-
port (such f are called mean-periodic functions on R); Choquet and Deny
[CD] replaced IR by a locally compact abelian group and assumed f to be
bounded and p to be a probability measure; Deny (D] further extended this
to the case where both f and u are positive (including the unbounded case);
Flirstenberg [Fu] and Benyamini and Weit [BW] considered the Choquet-
Deny type of restriction on Lie groups. Also in the 80’s there was a se-
ries of papers that extended Deny’s theorem to semigroups (e.g. RT and
sub-semigroups in R™) and the results were used to study various charac-
terization problems in statistics (DS}, [LR], [LZ], [RS]; cf. [RL] for complete
references).

The scalar-valued Choquet-Deny theorem and Deny’s theorem can be
stated as follows: '

r &R

THEOREM 1.1 (Choquet-Deny). Let (G,+) be a metrizable separable
locally compact abelian group, and let p be a probubilily measure on G.
Suppose f is o bounded continuous solution of

f=F*p. ‘

Then () = f(- +a) for all a € supp p. In particular, if supp p generates
the group G, then f is a constant function.

We will call a positive regular Borel measure a Rodon measure.

- THEOREM 1.2 (Deny). Let G be as above and let u be a Radon measure on
G such that supp u = G. Then any positive continuous solution of f = f*p
is given by

f=- fgdP(g), .
b :
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where P 15 o Radon measure on . .
£, = {g 1 g continuous, g(z +y) = g(z)gly), g(0) =1, f g(—y)dy = 1}.
G

Moreover, the above integral representation for f is unique.

Our first purpose in this paper is to extend the above two theorems
to the case where f is an B™-valued function and [ is an n X n matrix-
valued measure (Theorems 3.1 and 3.7), By applying such a Choquet-Deny
theorem and modifying the technique in [Fe], we obtain the solution of the
vector-valued renewal equation on R together with its asymptotic behavior
(Theorems 4.2 and 4.8). Our second aim is to use this result to answer the
question raised in [Str3] on the asymptatic behavior of the LP-density and
Fowrler transformation of self-similar measures (Theorem 5.3).

The basic idea of the proof of the extension of Theorems 1.1 and 1.2 is to
use iterated substitution together with some linear algebraic technique, to
reduce the vector-valued case to the scalar-valued case. This way we obtain
the general solutions for each coordinate and then match them up to form
the vector-valued solution, The vector-valued renewal equation considered
here has overlap with the one in the Markov renewal theory [C, Chap-
ter 10]. However, instead of being probabilistic, our approach is completely
analytic and self-contained. Also, without using the Markov matrices, the
solutions and results come out to be more symmetrical. In the development,
we mainly consider the case corresponding to irreducible matrices. The case
of reducible matrices turns out to be quite interesting in connection with
the asymptotic behavior of the solution of the renewal equation and the
LP-density of a self-similar measure (Theorems 4.5 and 5.3; see also [MW,
Theorem 4]). _

In this paper we have not considered the case where the functions and
measures take values in an infinite-dimensional space. This would be more
complicated as shown in the theory of nonregative infinite matrices in [S].
The Deny theorem extended here can also be modified to be considered
on semigroups as in [DS] and [LZ] without much difficulty; it can be used
to extend some applications in [LR] and [RL] to the vector-valued case.
Another possible extension of Deny’s theorem is to set up the convolution
equation with functions and measures taking values in the cone of positive
self-adjoint operators in Hilbert space or in the cone of positive elements of
a C*-algebra. This direction is considered in [CL].

2. Linear algebra preliminaries. For the set of states {1,...,n}, we
use v = (i1,...,4x) to denote the path which starts from state i; and visits
states ip,...,dp successively. Such a v is called a eyeleif 4y = ip, and a

simple cycle if it is a cycle and all 4y, ...,4x_y are distinct. -
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Let P, be the class of all n x n matrices with nonnegative entries. For
P el let P =[pilicijcn. The weight of a path v = (iy,...,4) with
respect to P is defined to be the product p,s, ... pi,_,i,- Let

C o pq’j itk= O,
(4, 7) = Yo Pude-1(L7) k>0,

If the sum of each row is 1, then P is called a Markov matriz; it then
corresponds to a Markov chain. In that case g, (4, ) can be interpreted as
the probability of the first visit of the jth state starting from the ith state
in k+ 1 steps, and ¢(4, j) is the probability of the Markov chain starting
from ¢ ever visiting j. A matrix P € P, is called irreducible if for each pair
i,7 € {1,...,n}, there exists k such that gx(i,7) > 0; this amounts to the
condition that any two states are connected by a path with positive weight.
It follows from the Perron—Frobenius theorem that if P is irreducible, then
the spectral radius of P equals the maximal eigenvalue; the eigenvalue is
simple and the corresponding eigenvector is (coordinatewise) positive ([M],
[3]). Also, a matrix P is irreducible if and only if every principle submatrix
(i.e., the square submatrix obtained by crossing out any j rows and the
corresponding j columns, 1 < j < n) has maximal eigenvalue strictly less
than that of P (see [M]).

Let P;; be the submatrix of P obtained by deleting the ith row and the
Jjth column, pj; the (n — 1)-row vector obtained by deleting the jth entry
of [pi1. - .., pin, and p; the (n — 1)-column vector obtained by deleting the

ith entry of [p1j, ..., pns]%.

g(6,5) = qu(i, 5).
k={}

LeMmA 2.1. Let P € P,. Then for any 1,3,

(2.1) (i) =piy + Py Z(P'ij)kpéj‘
k=()
Proof. By induction and a direct calculation, we have
Get1(69) = Y puae(l, ) = > pa (sz(sz)khlpﬁj) = pis(Pi;)*p;
I#] l#]
and (2.1) follows.

PROPOSITION 2.2. Let P € P, be irreducible. Then 1 is the maximal
eigenvalue of P if and only if ¢(3,4) = 1. for some (and hence all) 1 < i < n.

Proof. We first proof the sufficiency. Without loss of generality we can
assume that 1 =1. We claim that the matrix P;; has maximal eigenvalue
less than 1. Indeed, the irreducibility of P implies that any two states can
be connected by a path of length less than n? and of weight greater than

icm
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some n > 0. If Py; has maximal eigenvalue greater- than or equal to 1,

tlleQn there‘exists an entry i, jp of 2 reo{P11)* whose weight is greater than
ne Con.snder the matrix P; there exist two paths connecting 1 to ig and
Jo to 1 with length r +1 and s + 1 respectively, and with positive weights
greater than #. Furthermore, we can take the first {second) path to pass

through states contained in {2,... ,n} except the starting state (finishing
state respectively) at 1. Hence

L=4(L,1) > (py(P11)") Y (P} ((P11)°ph) > nn~2n = 1.
k=0

This is a contradiction and the claim is proved. Now Y oreo(P11)® will con-
verge and the limit is (X — Py;)~1. It follows that

(2.2) det(I - P) = det (I - P)ll(pll - 1) - i(—l)k})yﬂ det (I — P)lk
k=2
= det(I - Pll)(Pll - 1)

+ Z Z(_l)kalk(Pll det (I—P)y11)

k=2 [=2
= det(I—Pu1)(p11 — 1) + py3 Adj(T - Pyy)pt,
= det(I - P]_]_)((pn - l) + P1i(I - Pll)_lpgl)
= det(IT—Py3)(g(1,1) — 1) = 0.
Here (T — P)ix 1 is the (n — 2) x (n — 2) matrix obtained by deleting the

first and !th rows, and the first and kth columns of I — P, This shows that
1 i8 an eigenvalue of P. For A > 1, the above calculation implies that

det(AL - P) = det(AL - Puy)((p1y ~ ) + py3 OX — Pr)7'ply)-

Note that det(Al — Py1) is nonzero since the maximal eigenvalue of Py

is less than 1. For the second factor, using the nonnegativity of p;; and
(I—=Py)~t =302 (P11)*, we have

(P11 =~ A) + pyi (AT — Pu)—lpgl <(pu—1)+py;(X- Pu)~'p},
=¢(1,1) - 1=0.

Hence det(AI~P) 5 0 and A > 1 cannot be an eigenvalue of P, The maximal
eigenvalue of P is hence 1. .

To prove the last statement we observe that if P is irreducible and has
maximal eigenvalue 1, then P;; has maximal eigenvalue strictly less than 1
M, Theorem 5.3] and I ~ P; is invertible. In view of jdentity (2.2) proved
above, we conclude that q(i, %) = 1 for each 4. - :
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Throughout we assume that ¢ is a separable metrizable locally compact
abelian group. Let
Hi1 o ..o Him
M=} :
Hal e M
be a matrix-valued Radon measure (i.e., each py;, 1 < 4,5 < n, is a Radon
measure on G). If ||pi;|| < oo for all 4, §, we use

llas | [#1n]
My, = '
izt [t
to denote the matrix of variations of ;. For the measures p;; in M, and
for any path v = (4,...,%x), we use the notation

By = Prigdn ¥ oo F B g
It is eagy to show that for Radon measures u;, u2 on G,
supp(p1 * fia) = SUPp K1 + SUpp Kz,
supp(u1 + pg) = supp py U supp po.

Let MY = I, MaM = [T, pir* prg] and M*¥ be the k-fold convolution
of M. Let {A) denote the closed subgroup generated by A.

Lmaima 2.3, Let M be a matriz-valued Radon measure defined on G, ond
let

(2.3)

oa
Ty = iz T gz * Z(Mii)*k * pa,
k=0
Then for each 1 <1< n, (suppr) equals the closed subgroup Gy generated
by

1<ign.

U{supp oy 2y @ simple cycle on {1,...,n}}.
Proof Consider i = 1. Then 7y is the sum of w11 and the measures of
the form

oy = Higy * ook [, jl:"':jk € {2,.-.,?74}, 131:21"'
By changing the order of convolution of p., it is easy to see that r is the
sum of convolutions of the y.» where v' are simple cycles on {1,...,n}. Now
using (2.3}, we conclude that {supp r1) equals the closed subgroup generated
by (J{supp gty : v a simple cycle on {1,...,n}}.
As a simple example, consider the case where M is a 2 x 2 matrix-valued
meagure. Then Gy is the closed subgroup generated by

SUpp p11, SUpppgz  and  Supp pi2 * pog.

icm
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Using (2.3) we can show that supp pyp — SUpP L1z and supp g0 — SUPP fian

will also be in Gy However, supp 13 and supp #21 may not be in Gy (see
Remark 3.4 for a concrete example).

3. Vector-valued Choquet-Deny theorem. We will use the term
A-eigenvector for an eigenvector of a matrix corresponding to the eigenvalue
A; by a normalized vector we mean a vector of length 1.

'.I'I-IEOREM 3.1. Let M be a Radon measure on @, Suppose My, is irre-
ducible and has mazimal eigenvalue 1. Then any bounded continuous solu-
tion of '

(3.1) f=f+M
satisfies:

(i) If G = Gwm, then f = v for some constant ¢, where v is the unigue
normalized left 1-eigenvector of M.

(i) If G 4s a proper subgroup of G, then there exists o bounded con-
tinuous function p on G such that p(- + a) = p() for all a € Gna, and
f=[fi,..., fa] satisfies
(32) [.fl( + a‘ll): fﬂ( + Cb]_g), sy fn(' + a’ln)] == P(')V,
where @1; € SUPP fy(15), § = L,...,n and ~(1,5) is any path from 1 to j
such that Hey(1,4) 0.

Conversely, the £ described in (i}, (ii) satisfies (3.1).

Remark 3.2. The continuity in the theorem can be replaced by Borel
measurability; equations are then understood in the sense of almost every-
where, ‘

Remark 3.3. In (ii) the left side of (3.2) is independent of the choice
of the paths from 1 to j with nonzero weight. In particular, if each 1y 8
nonzero, we can just take ar; € supp p1;. Note also that each f; has period
a for any o € Gwm. Hence for aj; & supp pygia),

Fi(z+ay) = fi(z+ tay + ) — aj1) = fi(2 — aj1).-
Furthermore, the choice of a1; € supp t(1,4) can be replaced by a;; €

SUPP fiy(s,4) for any fixed i € {1,...,n}. This can be seen from the proof of
the theorem.

Remark 3.4, Since supp py,1) € Gwm, we have fl(:c +aq;) = f1(z). If
in addition supp (1,5 C G for each j, then (3.2) reduces to :
(f1(@), fa(z), - s Fal(@)] = p(z)v.
In general this is not true, and (3.2) amounts to saying that each f; is a
shift of a periodic function p times a constant multiple determined by the
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coordinates of v. For example, consider G = R and let
1
M = [%f1+\/§ 5 561 ] .
LV LI,
Then Gy = (1 + +/2), and [2,3] is a left 1-eigenvector. Hence
fi(z) =2p(z) and fafz) =3p(z+1),
where p is a periodic function of period 1 + V2.

Proof of Theorem 3.1. We use the technique of repeated substi-
tution to reduce the equation to the real-valued case, and then apply the
Choquet—Deny theorem. First let us consider the case n =2
(3.3) {f1=f1*.u11+f2*1121,

' Ja= fu* paa + fa * poz.
It follows that

(34) fo=f1xp1+ (f1*pa2+ fax o) * usy
= f1 = pa1 + Fuok paa sk oy -+ (f1 % aa 4 fa % liga) * poz ¥ gy = ...

!
= fu# (#11 +pnx Y Ak« |U'21) + fax uastt % o
k=0
Since My, is irreducible, ||paz|] < 1, the remainder term converges to zero
‘and hence

(e o]
(3.5) fi=fix (I-bn Fpna x> pih [.621).

k=0
Denote the measure on the right by ;. By assumption My, has maximal
eigenvalue 1, and Proposition 2.2 implies that

o0
Imall = llaall + ezl Y s - el = L.
k=0

By the Choquet—Deny theorem, f satisfies fi(z+a) = fi(z) for a € (suppm1)
= Gu (Lemma 2.3). Similarly f; is of the same form.

In case (i), both f; and f, are constant functions. A direct substitution
into (3.3) yields f = cv, where v is the unique normalized left 1-eigenvector
of Mea;.

In case (ii), since

SUPP fy(1,1)> SUDPDP Hoy(2,2)> SUPP fhy(1,2) T SUPP fhy(2,1) & G,
and fi and fo have periods a for each a € Gy, we have

Az + o) = f(z) = fi(2)||paul + f2 * par(z)

= fi(z)p + f fo(z + 012 — a12 — y) duos (y)
‘ & .

icm
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= fu(z}||pl] + fo(z + a12) f dpar (y)
@
= fulz +en)llpnl + fale + axs)lipay

for any a1; € supp piq(1,5), J = 1,2, and similarly

fale+a12) = [ fulm+ (a12 +a21) — (aa1 + ) dpna () + fole + a1a)||paz|
ag

= (@) [ dp1a(y) + Fale + ag)||panl]
G

= fi(e + an1)||pae| + f2(z + a12)]|paz]|-

This implies that for each z € G, [fi(z + aw), falz + a12)] is a left 1-
eigenvector of M. For the fixed normalized left 1-eigenvector v of M, we
can write the above vector as p(z)v. It is easy to show that p(z +a) = p(=)
for a € G, and assertion (ii) follows from this.

For the general case we make use of

[f27"'sfn]=fl*M1i+[f2:---:fn]*M11;

where ;5 = [p12,. . ., fi1n], and My; is the (n— 1) x (n—1) matrix obtained
by deleting the first row and first column of M. By a substitution similar
to that in (3.4) we have

fl = fl*;ull +[f21-"7fn] *”11
= fl *(#’11 +Mli *util)+[f27"'?f‘nJ * Mg *#’%1
!
= f]_ * (I-"ll + B * Z(Mli)*k d p’?.l) + {fz, ey fn] * (Mll)*H_l * Mg‘.l
k=0
Since Myar has maximal eigenvalue 1 and is irreducible, the submatrix

(Myar)11 has maximal eigenvalue less than 1 (see [M]) so that the last term
converges to zero, and we have

2.0l

(3.7) fi=Jfix (Mn +opgg ¢ Y (M )™ x l-‘iiﬁ) = fi*mn.
k=1
Similarly we can set up the convolution equation for fs,..., f, with 7,...

-+, Tr Tespectively. The rest of the argument is the same as above.

A function g : G — R is called an ezponential function if g(z +y) =
g(z)g(y). Let £ denote the class of continuous exponential functions with
9(0) = 1. For a Radon measure 7, we let

&= {g et: [ g(—y)dr(y) = 1}-
G
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The topology on £ is the weak topology generated by C.(G,R), the space
of continuous functions on R with compact support (see [D}).

We will use the notation u(h) to denote [, h(y) du(y). For M = [u],
we let M(h) = [1s5(1)].

LEMMA 3.5. Lel p be a Radon measure on G. Then for g € £,

k
g we) = 9(@)( [ o(-v) ) = gle)u(@)*,
&
where §(y) = g(~y).
PrOPOSITION 3.6. Let M be a matriz-valued Radon measure on G such
that Myar i irreducible. Let
Eve = {g € £: M(§) has mazimal eigenvolue 1}

and let

oo
Ty = My + Moo * Z(M
k:o
Then for eachi, £, ={g € € : 7:(§) = 1} = 1.

Proof. Let g € £ be such that 7;{g) = 1. By Lemma 3.5 above, we have

l= TI(N) ﬂ'n(*') + i g ~) Z (h‘)y’m('\')

k=0
By Proposition 2.2, M(g) has maximal eigenvalue 1. Coonversely, assume
M(7) has maximal eigenvalue 1. Since My,; is irreducible, so is M(g). Propo-
sition 2.2 applies again and 7;(3) = 1 for each i.

k i :
ii)* L i=1,...,n.

'THEOREM 3.7. Let M be a matriz-valued Radon measure on G such that
Moz is drreducible and Gy = G. For g € Em, let v(g) denote the unique
normalized left 1-eigenvector of M(g) (M(3) is also irreducible since it has
the same nonzere entries as My,,). Then gv(g) is a solution of

(3.8) f=fxM.
The general nonnegative continuous solution of (3.8) is given by
(3.9) = [ gv(g)dP(g),

En

where P is @ Radon measure on €.

Proof. The first statement is just a direct check. We will prove the main
part by considering the 2-dimensional case. The general case will follow by
a suitable modification. By (3.4) we see that

{fax udh » um )

icm
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is a decreasing sequence. We claim that its pointwise Limit A is zero. Note
that h satisfies h = h * pg. Hence

o)
h*'rl =hx* (Hll -I-,'_ng*z,u,;';*p,ﬂ)
k=0

o0
= ho* gy + pao * (Zh*,uﬁfq“) * flg1
k=D

= h* gy + pg * (Zh) * pro].
=0

On the other hand, by substituting A into (3.4) again we have
f=fixn+h=(fixni+h)*7 +h

Now fi{z) < oo implies that (h * 71)(z) < oo, and hence h(z) = 0. It
follows that fi = fi % 7. Applying the same argument to fa, we also have
f2 = fa % 7o. By Proposition 3.6 we get & = &gy = Em, and by Deny’s
theorem,

f?, = fgdpz(g)a

Putting this back into (3.8), we have

[ 94Pie) = [ glun () dPy(g) +

£M EM

f 9dPo(g) = [ g(112(3) dP1(g) + 23(3) dPa(g)).

En ¢

i=1,2.

21(g) dP,(g9)),

The uniqueness of the representing measure implies that the measires on
both sides are equal, i.e.

(310)  [4Py(s),dPo(e)] = [dPi(g). dPa(g)] [’”1 9 “12("3]

p21(3)  p22(9)

Let v(g) be the normalized left l—eigenvect.cr of [:5(8)}. Then (3.10) can be
expressed as

[dPy(g),dP2(g)] = v(g)dP(g),

where P is a Radon measure on £n and (3.9) follows.
For n > 2, we will use induction. A repeated substitution of

(3.11) Ji=f1®p1+[fa,...
into [f3,..., f,] yields

Ful % 14y
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(312) [f?,) ey f'n]
= f1*py5 + [fa,. 00, fu] # My

= fu*pnn * pyg + ifa, oo, fo] % (Mg +tu‘%1“‘11)

i
=f1 *."—"1‘114-1 *u1i+[f2="'afn]* (Mll 'I'I-"tjl *Z”T}f*uli)v
k==0

By the same argument as at the beginning of the proof, we can show that

Fu# i s converges to zero, hence

[f27"':fn} = [f2;--'a.f‘rb]* (Mll—f'.u'%l*uli *ZF‘TI{)
k=0

=[fo,. s ful * My + Qua).

The induction hypothesis implies that [fa,. .., f»] is 2 mixture of vectors
of the form gu(g), where g € £, the set of exponential functions defined by
the matrix-valued Radon measure Myy + Qy; as in Proposition 3.6; u{g)
is the normalized left 1-eigenvector of (Mj; + Q11)(g). By making use of
gu(g) and a repeated substitution of (3.11) into itself and observing that
{1111(8))* — 0 as k — co, we have

[ea)

fr=o( D (@) )u(o)est, @

k=0
It follows that fy is also a scalar multiple of g € £1. We conclude that if
[fi,-.., fn] is & solution of (3.8), then each f; is a mixture of g € &. Such
g must satisfy 71(g) = 1 (Deny’s theorem), hence £ C Ep. Conversely, it
can be checked directly that each g € &y is in &£, hence £ = Em. Now an
application of the argument in (3.10) yields the theorem.

Remark 3.8. In Proposition 3.6 the set &y may be empty even in the
scalar-valued case; the only solution f is then the zero function. ¥ M is
defined on R and is supported by [0, 00), then £y contains at most one
element. Also, if M is defined on G and if Mya, has maximal eigenvalue 1,
then &y only contains the constant function; Theorem 3.7 is just case (i) of
Theorem 3.1.

4. Vector-valued renewal equation. In this section we will consider
the inhomogeneous convolution equation of the form

(4.1) flz) = z(z) + £« M(z),

Vector-valued Choquet-Deny theorem 13

where M is a matrix-valued Radon measure on R that vanishes on (—o0,0),
and z also vanishes on (—c0,0). In the scalar-valued case (4.1) is called
the renewal equotion because of its closed connection with renewal theory

([Fe], [C])-

Formally, the solution f is of the form
flz} =2z x ZM*;C(SC)
k=0

The class of functions z in (4.1) under consideration are the directly Riemann
integrable functions. A function h: R — R is called directly Riemann inte-
grable if it is Riemann integrable on any finite interval and 3°, 1RX (k13 | oo
< ©00; this implies that (as in the definition given in [Fe]) for any £ > 0, and
for n sufficiently small,

Z my, and Z my converge absolutely, and Z(T_n,k —mpin <&,

K k k
where 7%, and m; are the supremum and infimum of h on the interval
(kn, (k+1)7] respectively. It is clear that a continuous function with compact
support is directly Riemann integrable; also, a function which is decreasing
on [0,c0) and vanishes on (—oo, 0] belongs to this class if and only if it is
Riemann (or Lebesgue) integrable. The main purpose of introducing this
class of functions is the following lemma.

LEMMA 4.1. Suppose {ui} is a sequence of measures defined on R such
that {ue(1)} is uniformly bounded for oll intervals of fired length |I|, and
{ur} converges vaguely to the Lebesgue measure. Then

[ (@) dps() — [ h(z)dz

R B
for any h directly Riemann integrable.

Proof. The proof is contained in [Fe, p. 349]. By definition {uz} con-
verges vaguely if [ dpsy converges for any continuous ¢ with compact
support. If the limiting measure is the Lebesgue measure, then the vague
convergence is equivalent to

f(pd,ukﬂf.tpdn:
R R

for every step function ¢ (see [Ch]). The uniform boundedness of {us} im-
plies that the step functions in the above convergence can be replaced by
Y =3k Ok X(kn,(h+1)n)> Where >, lag] < 0o, The lemma follows by approxi-
mating the directly Riemann integrable function & with such ¢. :
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In the following we will first consider the asymptotic behavior of
U = 3 02 M**, where M is a matrix-valued Radon measure defined on
R and vanishes on (—o0,0). It is easy to see that the closed sub-
group Gy generated by U equals the subgroup Gps defined in Lem-
ma 2.3. For convenience we will write the matrix-valued measure M by
means of

Fu Fln
F = ’
Fnl F'n.n

) = [Fij(00)]; also by a slight
Fij(z). Let

where Fi;(z) = py;(—o0, 2], and write Foo
abuse of notation we use Fi;(z,2 + h] to denote Fy;(z -+ h) —
m = [m;;] = [[;° = dFi;(z)] denote the moment matrix.

THEOREM 4.2. Suppose F is o matriz-valued Radon measure defined on
R such that each entry is nondegenerate at 0 and vanishes on (—o0,0).
Also, suppose F(oo) is #rreducible and has mazimal eigenvalue 1. Let U =
Yore F**. Then:

(i) If Gm =R, then

(4.3) - lim Uz, z + h] = Ah,
£—00
where
®MIVL ... ULV mi1r .0 e Uy,
1 . ) : : .
A:_ . : }, 05=['U1,.‘.,1)n]]: : : } {:}
44
Untl ... UnPn Mp1 ... Mgn Uy

(A = 0 if one of the my; is oo) and u,v are the unique normalized right
and left 1-eigenvectors of F(co) respectively.

(it} If Gna = () for some p > 0, then (4.3) can be adjusted to: for any
@ij € SUDPP fh(i,5) (See Theorem 3.1),

(4.3’) E]LH&Q[U” (CL‘ i, B Gy T g]] = Ap.

Proof. We first show that for each fixed I > 0, U{z, z + {] is uniformly
bounded. Let v = [vy,...,v,] be the unique normalized left 1-eigenvector of
F{oo) which is irreducible. Then by the Perron-Frobenius theorem, v; > 0
for each 4. Let vy = min, v;. Note that
a4 I-F)+Ulg)=L o3>0

By using the coordinatewise ordering, we have

icm
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v=v({I—-F)«Ulz) = v(F(c0) - F) + U(x)
> vp j [é(ﬂl(w) —Falz~y),..., é(ﬂn(w)‘ — Fin(z — y))] dU(y)
vo f.
b
2 o [é(Ffl(OO) — Fu(6)),.-. :i(ﬂn(m) = Fm(ﬁ))JU(fc — &,].

Since the Fﬁ’s are nondegenerate at 0, we can find § > 0 such that the
vector [0 1(F11( )= F31(6)), .. ] above is positive. Hence for each z € R,
Uz — 6,z] is uniformly bounded It follows that U(z,z + [] is uniformly
bounded for fixed I.

From this we see that for the family of measures {U(- +¢)};sp there is
a subsequence {fx} with ¢, — oo as k — co such that for each z € R,

Uz +1t) — L(z) ask — oo

{Note that U is supported by [0, 00), but L is supported by R.)
Consider the convolution equation

(4.5) f(z)=z(z) +f*F(z), x>0,

where z is a continuous function with compact support and vanishes on
(—00,0). Then f = 2 U is well defined and a direct substitution implies
that it is a solution of (4.5). Note that

fltr+2) =2+ Uty + z) — z % L(z) = £(z),
and by (4.5), _
(4.6) £(z) =€ExF(z), zeR.

It Gm = R, by Theorem 3.1(i) and Remark 3.2, we have £(z) = av for
some constant a, where v is the normalized left 1-eigenvector of F( ) It
follows that

(4.7 2% Uty +z) = 2xLz) =av

for all 2 as described above. In particular, by taking z = [0,...,2;,... , 0
separately, we conclude that each row of L is independent of z, hence pro-
portional to the Lebesgue measure and

a1 ajvt ... Q1Y
(4.8) Ult, ty + h] — [ ]vhm |: :

[17% Gr¥r ... QpUp

zeR,

h= Ah

a8 k — oo {using the vague convergence),
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We will now determine ai,...,a,. Let u = [u1,...,u,]" be the normal-

ized right I-eigenvector of F(oo). Let z be such that

(49) (o) = {(()F(oo) ~F{z))u (also =(I-F(z))u) ifz =0,

ife <0,
and let £ = U * z. Note that

f (F(oo) ~ Fa)) do = [ [ (Fiy(o0) - Py(a) do]

0
oo
= [ f :cdﬂj(:r:)] = [m,‘j} = 1.
]
Assume that all the entries of m are finite measures. Then each coordinate

of z is decreasing and integrable, so directly Riemann integrable. By using
[=Ux(I-F), (48), (4.9) and Lemma 4.1 we have

= de(tk —$)Z($G)

{4.10) u = ft)
0
- f Az( ( f F(x)) dx)
0 0
This implies that
N o (5]
(4.11) u=Amu=| ! |(vmu)
L Oy,
80 that
[43] R U1
. . - a : .
Oy, L Uy U,
Hence (4.8) yields
Wiy ... UpUn
UnVL  vo UpUp

If mi; = oo for some 1, j, we can make use of the following fact: if p, —
vaguely, and if h is lower semicontinuous, then

To~rOO

liminf [ hdun > [ hdp.
R R

Note that each coordinate of z(z) in (4.9) is lower semicontinuous, we can
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hence replace (4.10) by 2, so that (4.11) can be replaced by

st al .
[f:lz Iifjl(vmu),
U, G

This implies that a; = ... =q, = 0.
Finally, we observe that in (4.8) the limit
Ut tx +h] — Ah  ask — o0

is independent of the choice of {4} tending to infinity; hence we conclude
that

U(t,t+h) = Ak  ast— oc.

This corpletes the proof for the case Gy = R.

If Gy = (o) for some ¢ > 0, we use (4.6), Theorem 3.1(ii) and Re-
mark 3.3 to conclude that z; * Uy; (tx + 2) — z; * Ly;(z) which is a periodic
function of period g, and for a;; € supp Hoy(ing)s

(4.12) z* Ui (ty +z + ai5)] — z* Lz + aij) = p(z)v

for some continuous periodic function p of period p. It follows that

Q] a1ty Q1Un

U(tkwkm—}—a,ij,t;c-l-m-{-aij—l—g]-—-» VQZ[ }Q:AQ

Lan ntt ... GpUy
as k — oc. To determine ay,...,a,, we proceed similarly to case {i). First
we let z be defined as in (4.9) and let £’ = U’ % z, where

U'z) = [Uij(z + ag)l,  aij € Supp piy(s ).

Note that U’ (I— F) = I (as in (4.4)); by the same argument as in {4.10),
(4.11) and so on, we can conclude the proof of (ii).

THEOREM 4.3. Under the same hypotheses on F as in Theorem 4.2, let
z be a directly Riemann integrable function with 2(z) = 0 for z < 0. Then
f(2) = 2% U(z) is a bounded continuous solution of

(4.18) f(z) =2(z)+fxM{z), x>0,

and i is unique in the class of continuous solutions that vanish on (~o0,0).
Furthermore, if Gy = R, then

Jim £(z) = ( fz(t) dt)A
0

where A is defined as in Theorem 4.2. If Gy = (@) for some g > 0, then

Tohad
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for each 2 > 0, and a1; € SUPY fiy(1,5)s

1i11;o[f1 (z+ ap +n0),..., fulz + a1n +n0)] = (Zz(m + kQ))A.
n— &
Proof Lemma 4.1 implies that the convolution z+U(z) is well defined.
It is direct to check that f(z) = z+U(z) is a solution of the renewal equation.
To prove the uniqueness, we let f; be another solution. Let g = f — f;. Since
g and F both vanish on (~c0,0), g satisfies the convolution equation
&z
g(z) = [ glz —y) dF(y),
D

x> 0.

By iteration,
&

g(z) = [ glz —y) dF™(y),
0
Since F™(0, 2] — 0 as n — oo, it follows that g(z) = 0 for z > 0.
To prove the asymptotic property of £ for the nonarithmetic case, we
need only use (4.3) and Lemma 4.1:

z > 0.

T oo
£w) = [ 2(9) a0 —y) - ( [2t)dt)A asz— oo,
Y 0
For the arithmetic case, we can use (4.3’) instead to draw the conclusion.

Remark 4.4, If the matrix F(co) in Theorem 4.3 has maximal eigen-
value less than 1, then as in the previous case,

flz)=2zx (iF*k) () =z*U(z)
k=0

is a solution of {4.13). Moreover, f is also directly Riemann integrable and
hence f(x) — 0 as  — oc. For simplicity we will demonstrate this in the
scalar case: Let 1 be a bounded positive measure supported by [0, 00), and
let z be directly Riemann integrable. For any @ € [k, k + 1] and any &k > 0,

7 k
zx pu(x) = f 2z — ) du(y) <Y || #Xipmiot by oot i + 1),
0 3=0
8o that
oo ok
Z e P’)X[k,)ﬁ-l) oo < Z Z |lzX[k—i—1,k-i~F—11 llcontlt; 4+ 1)
k=0 k=0 i=0

<23 |l#X e e llooktl0, 00) < 00
k=0

and z % u is directly Riemann integrable.

icm
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In the following we will discuss the asymptotic behavior of the. solution
in Theorem 4.3 when the matrix F(oo) is reducible. For simplicity we will
first look at the case where F(oo) can be decomposed into two irreducible
components and the moment m of F is finite. Consider the following four

cages:
Ly 0 E, 0 L; 0O E;, 0
K L:|” |K L’ |K E;|' |K E!’
where Ly (00) and Lz (00) have maximal eigenvalue less than 1 and E; (c0),
Ez(oco) have maximal eigenvalue equal to 1. Let us write the renewal equa-
tion in the form
[f1,f2] = [21,20] + [f1,f2] x F,

where the number of entries of f; and f; corresponds to the decomposition,

and zz # 0. If K = 0, then the equation reduces to two separate ones and

the solutions for f; and f are given by Theorem 4.3 and Remark 4.4.
Assume that K £ 0. In the first case,

fg(m) = Zz(CC) + £y * Lz(m) —0
as & — 00 by Remark 4.4, and
fl = (Zl -|-f2 *K)+f1 *Ll :Zl-f—fl*Ll,

where 2’ ;= #) +f, =« K is directly Riemann integrable by Remark 4.4. Hence
f) is asymptotically equal to 0 as z — 0.

The second case follows from the same argument: fa(z) — 0 as © — oo
and fi () is asymptotically periodic by Theorem 4.3.

In the last two cases, f3 > 0 is a bounded, asymptotically periodic func-
tion by Theorem 4.3, If

f1=(z+f2*K)-i-f1*L1

(the third case), then
!
f]_ = (Z+f2 *K) * ZLIk + f1 *LII—E-]',
k=0

The right side converges to (z +fo xK) # 3o L*, which is also asymptot-
ically periodic.

If :

fi=(z+5H*xK)+fixEy

(the fourth case), let u be a 1-eigenvector of E1(oc) with all entries positive.
There is a constant ¢ > 0 such that

z(z)+ £« K(z) > cu
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(coordinatewise) for sufficiently large . Hence
fi >ecu+f By > cu+ cu- Ey(co) + f1 « Ef?
=2u+fi+E2> ...
> Ncu
for any N, which means limg—.o f1 (2) = 0.
For the general reducible case we divide the set of states {1,...,n} in
F(oo) as follows: let S be the set of states such that the corresponding
irreducible components of F(oe) have spectral radins 1; Sy € 9 consists of

those states j that cannot be reached from any state of S corresponding to
the other components. For example, let

L, 0 0
x E1 0
i x o ox L :
F= x K x E; ’
X X X 0 E; 0
X x % x x Lj

where K # 0. Then 5 consists of states corresponding to E; for 7 = 1,2,3
and Sy consists of states corresponding to E; for i = 2,3.

By using the above argument we have the following theorem for the
general reducible case:

THEOREM 4.5. Suppose F is a matriz-valued Radon measure defined on
RT such that each entry is nondegenerate at 0 and has finite moment. Also,
suppose that F{oo) has marimal eigenvalue 1. Let S and Sy be defined
as above and let z be o directly Riemann inlegrable function on Rt such
that z; # 0 for i € Sy. If f is continuous, bounded on finite intervals,
vanishes on (—00,0], and satisfies the renewal equation in Theorem 4.3,
then £ =z Y 0o F** and the components f; satisfy:

(i) If i € Sp, then
Jim (fi(z) - pi(x)) =0,
where p; s either a periodic or a constant funciion (see Theorem 4.3).
(i) If 1 € 5\ Sp, then limgoe fi() = o0.
(iii) If i & S and there is no path from S to i, then limg., oo fi{z) = 0.
(iv) If i ¢ S and there is a path from So to i, but no path from S\ So
to i, then
Jim (fi(z) — pi(2)) =0
for some p; as in (i).
(v) If i & S and there is o path from S\ Sy to i, then imy.—.co fi(2) = 00.
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The proof is simple in view of the four cases above: (i) corresponds to
E; in the second case, or E; in the third case; (ii) corresponds to E, in the
fourth case; (iii) coresponds to Ly, Lo in the first case or L2 in the second
case; (iv) corresponds to Ly in the third case; (v) uses (ii) and the same
argument as for L; in the third case,

5. Self-similar family of measures. In this section, we will apply
the renewal theory developed in Section 4 to study a self-similar family of
measures. Recall that for a finite family {S;}7, of contractive maps on R¢,
there exists a unique compact subset K in R4 satisfying K = Uj 5;K. The
set K can be obtained by iterating the maps using the cascade algorithm,
starting from any fixed bounded set or point. For this reason we call {S; };11
an iterated function system (IFS) and K the attractor of the system. If we
assoclate a probability weight w; to each S, then the iteration will produce
a unique probability measure y satisfying

m
Y= ij,uon"l.
=1

In particular, when the ;s are contractive similitudes, i.e., § i = p; Rz +
bjy 0 < g; <1, R; arotation and b; € RY, we call K a self-similar set
and y a self-similar measure. If in addition the $;K’s are disjoint, then each
S5; K is an identical copy of K, and the same holds for p restricted to S, K.
This basic concept of self-similarity was introduced by Mandelbrot in his
momentous monograph [Ma], the above mathematical set up was given by
Hutchinson in [H] and the iterated function system notion was invented by
Barnsley [B]. The reader can refer to [F] for more details.

The condition that the S;K’s are disjoint is too restrictive (e.g., the
standard Koch curve and the Sierpiriski gasket do not satisfy it). In [H],
Hutchinson defined another very useful separation condition called the open
set condition: there exists a bounded open set I7 such that

SUCU and SUNS;U=0, i#j

Then U is called a basic open set of the IFS. It was proved in [LW] that
under this condition, the self-similar measure 4 defined by the S’ satisfies
either u(OU) =1 or 0 (8T is the boundary of I7); using a theorem of Schief
[Sc], we can find a basic open set U such that 4(8U) = 0 (see [L2]).

To define a self-similar family of measures, we will follow the notations
of [MW] and [Str3]. Let (V, E) be a directed multigraph, i.e. V is a finite
set of vertices and E a finite set of directed edges. We use Ey . to denote
the set of edges joining u to v, which may be empty or may have more than
one element. As defined in Section 2, a path from u to v in the multigraph
is a sequence of edges (ey,...,e,) where e; € Fy, o, for some u; € V and
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U = U, Uns1 = V. A eycle is a path (€1,...,en) such that u; = w11, We
say that the multigraph is connected if for any u,v € V there is a path from
2 to v or from v to u. If both such paths exist then we say that the graph
(V, E) is strongly connected. Without loss of generality we may assume that
the graph under consideration is connected.

Let {5{e) : e € V} be a family of similitudes such that the ratios r(e)
satisfy the contractive condition

rie1)...r(en) <1
for any cycle (e1,...,eq). Assume that w(e) > 0 for each edge e € E, and

Z Z w(e)=1 forallve V.

uEV e€Fy o

Then there exists a unique family {z,} of measures such that

6.1) po= 3 w(euao S(e)
ueV ey,

for all v € V (see [MW)]). The family {u,} is called a self-similar fomily
of measures. For the special case of self-similar measures defined by the
{8517, at the beginning of the section, we can take V = {1,...,m}, E=
{e:e=(i,5), 4,5 =1,...,m}, S(e) = S; and p(e) = p; for e = (4,), and
pj = . If further {S;}7%, satisfies the open set condition with basic open
set U, then pu, is supported by the closure of U.

By extending the definition in [H], we say that {S{e)} satisfies the open
set condition if there exist open sets U/, for u € V such that

S, U,

for all e € E, ., and for each v € V, the sets {S(e)U,} are digjoint, for u
running through V and e € E, ,. In this case the measure p,, is supported
by the closure U,. Similarly to the scalar case, we can find basic open sets
U, for uw € V such that

(6.2) 1 (BU,) = 0,

provided that the graph is strongly connected (see [W]).

For 0 < p < o0 and B € R, we define the (L, #)-density of a measure p
on R™ by

- ' 1
D () == hﬁfﬁpm”u(ﬂ('))ﬂm(m,
where B.(z) is the ball centered at = with radius £, and the LP-dimension
of it by
sup{3: Dg(u) < oo},

icm
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For a self-similar family {u,} of measures, let @, be the positive number
such that the matrix

(53) [a‘u,’u] = [ Z w(e)p,’.(e)wap]z u, v € V)
eER, 4

has maximal eigenvalue 1 (see [MW]). Under a separation condition stronger
than the open set condition, Strichartz [Str3] showed that if (V, E) is strongly

connected then
1
(5.4) &y(t) = e, f teu (Bi(x))P dz

Is positive and bounded. It follows that the LP-dimension of each u, is
ap/(p — 1). He then conjectured that, as in the scalar case in [LW], {xo}
is asymptotically multiplicatively periodic, i.e. there is a multiplicatively
periodic function ¢(t) such that

Jm (60(8) — g(t)en) = 0,

where ¢ = [p,], v € V, is the unique eigenvector such that
Z Ouluy = Oy
wel

forallv € V and 3] g, = 1. In the following we will show that the conjecture
is essentially true.

THEOREM 5.1. Let (V,E) be a strongly connected multigraph and let

{1} be a self-similar family of measures satisfying the open set condition.
Let

va(t) - t”“i'% f /.bq,(Bt(w))P dx.

(i) In the arithmetic case, i.c., if (—(Inr(e1)+. .. +Inr(ey)) : (e1,...,en)
is o simple cycle) can be generated by — Inr for some r > 0, then there exists
o multiplicatively periodic function g with period r such that

tli%1+(¢”(t) —g{ryitles) =0 forveV,

where 1y, = r(e1)...7(en) for any path {e1,...,e,) fromu &V fov.
(ii) In the nonarithmetic case, there is a constant ¢ such that

ﬁ];i}(zjwjr $u(t) =coy, forveV.
Proof. By (5.1) we have

8= s [ (32 pledac 507 (Bulo)) de

wEV eeFy, . E
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Note that p, o S(e)~* is supported by the closure of S(e)Uy,, and for any
e # ¢ the intersection of S(e)U, and S(e')U, has empty interior. Hence

'” tﬂ-i-oe;; Z z f (ﬂu o S(e)—l

UEV €€ Euyn d(:r 8(S(e)Uw)) 2t

ey [ (3 2 #Omeo (0 (o))" e

UEV e€Ey »

(Bi(®)))" dz

where the set I consists of points = such that d(z,8(S(e)Uy}) < t for some
e € B, ,, and some u € V. The inequality

" P m
(Xow) sed o mzo

for some ¢ > 0 (depending only on ) implies that the second term of ¢, (t)
is less than

ST Y Her [ (eSO BE)
UEV e€By v d(z,8(S(e)lu))<t
We can write
(65) 6u) = spes 3o 3 P [ (o S(e)HBua)) dm + Ru),
uEV ech, ,
where
(56) Ru(t)
<Y S per [ (o SET B,
uEV eEFu,y d(z,0(8(e)ly)) <t
Note that
[ (o SETUBE)P

d(w,8(3 (e)Uu)) <t

r(e)
- e f uu(B,.(e)uzt(:c))?’ dz.
dlz, 00, ) <r(e) 711

By an argument similar to that in Lemma 3.6 of [LW] and making use of
(5.2), we can show that

1
t"""’“?’ f
o d(z,0U, } <t
is of order o(%*). Hence so is Ry(t).

pu(Bi(2))P daz
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Now let t = 7%, fu(s) = ¢o{t) and 2,(s) =
M = [Ay,v] of measures as

v = 3 PEPT(©) 610,

eEEulu

R,(t). Define the matrix

It follows that the matrix of variations

[“/\u,v”] = [au,v]

is irreducible and has maximal eigenvalue 1 with eigenvector g. Now (5.5)
becomes

f'u(-g Z ffu s“s)d)\'u.'u( )‘|"zv(5)

weV

= Z f Ju(8— ") dAyo(8) + 20(s)  for s >0,
weV 0 )
where z,(s) = 3., [ fuls — §) dAu,(5") + 2o(s). The fact that the A, ,’s
have compact support implies that >~ fsw Suls—s")dAy {s").= 0 for s large.
Also z,(s) = 0(e™**) as s — oo for some positive number ¢, hence each z/,
is directly Riemann integrable and Theorem 4.3 applies. By converting f,
back to ¢y, the theorem follows.

One of the main reasons for studying the LP-density, in particular the
L?-density, of self-similar measures is to consider the asymptotic behavior
of their Fourier transformation ([L1], [LW], [Str1,2,3]). Under the open set
condition and by using a new form of Tauberian theorem, it was proved in
[LW] that the average (1/7"~#) f1 gl<r A€ )|? d€ of the Fourier transforma-
tion of u is asymptotically multiplicatively periodic as 7" — oc. Using the
same argument, we have

THEOREM 5.2. Under the condition of Theorem 5.1, there is o multiplica-
tively periodic function Q such that

i (T—l-‘é J Im(f)l%s-—cz(m,@)eu) =0,

T
igl=T
and in cose (i} the above Q is a constant function.’

To conclude this section we discuss the case when the graph (V, E) is
not strongly connected, which means that the matrix [a,,,) defined in (5.3)
is reducible. A subgraph H is said to be a strongly connected component of
(V, E) if it is a maximal strongly connected subgraph. The strongly con-
nected components are pairwise disjoint. '

Let a, be the number such that the matrix (. ] in (5 3) has mammal
eigenvalue 1, Define @, as in (5.4). For any strongly connected component
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H of {V, E) the maximal eigenvalue of [a, ], u,v € H, is less than or equal
to 1. There is at least one such component so that the maximal eigenvalue
of the corresponding submatrix of [a, ] is equal to 1. Let § be the set of
vertices in all such components. Let Sy C § consist of vertices v that cannot
be reached from any vertex of S in the other components. By Theorem 4.5,
we have

THEOREM 5.3. Let (V, E) be a connected multigraph and let {u,} be o
self-similar fomily of measures satisfying the open sel condition. Then:

(i) If v € Sp, then
Jim (8,(6) — (1)) =0

for some multiplicatively periodic function g, > 0.
(i) If v € S\ So, then limy_g+ ¢u (L) = co.
(i) -If v & S and there is no path from S to v, then limy_, o+ ¢, (f) = 0.
(iv) If v & S and there is a path from So to v, but no path from 5\ Sy
to v, then

t}irgl+ (qBv(t) - q"u(t)) =0

for some bounded multiplicatively periodic function g, > 0.
(v) If v &€ S and there is a path from S\S; to v, then lim, g+ ¢, (t) = co.

As a direct corollary of the theorem, we have an analogue of Theorem 4
of [MW]. '

COROLLARY 5.4. Let B, = ap/(p — 1), where oy, is defined in (5.3).
Then for v € 8, uy has LP-dimension (B,. Moreover, each p, hos finite
(LP, B,)-density if and only if § = Su, that is, if there is no path between
two vertices of § which are in different components.

Proof. For v € Sy, it follows from Theorem 5.3(1) that g, has dimension

fp. For v € §'\ Sy, it follows from Theorem 5.3(ii) that the L”-dimension of
ty is not greater than 8. On the other hand, for § < 3, the matrix

W= 2 perr Y] wvev,
e Ey o

has maximal eigenvalue less than 1. By Remark 4.4 and the proof of Theo-
rem 5.3,

) . By(«))Pdz =0

ltﬂ_l)(sjlip Tt Bp—1) f Ho{By(x))F dz = 0,
This implies that the LP-dimension of p,, v € 5\ Sp, is also F,.
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Extension Gevrey et rigidité dans un secteur
par

VINCENT THILLIEZ (Lille)

Abstract, We study a rigidity property, at the vertex of some plane sector, for Gevrey
classes of holomorphic functions in the sector, For this purpose, we prove a linear contin-
uous version of Borel-Ritt’s theorem with Gevrey conditions.

0. Introduction. On sait qu'une fonction f holomorphe dans un voisi-
nage V de 0 dans C est completement déterminée par la donnée des f )(0),
n € N. En fait, cette donnée peut étre remplacée par celle des f(%)(z,),
n € N, olt (2,)n>p est une suite convenable de points de V. Divers au-
teurs, dont J. A. Marti [Ma] dresse la liste, ont ainsi donné des conditions
suffisantes trés précises sur la suite (2,)n>p pour que seit vérifiée cette pro-
priéte, dite de “rigidité”. A titre d’exemple, lorsque V contient le disque
unité fermé, le corollaire 2.8 de [Ma] stipule que la condition

() Z%—:;Tp)’|zn|1’go<2 pour tout nde N
p=1 "

est suffisante pour que la nullité des f(™(z,), n € N, implique celle de f.
La clef du probléeme dans [Ma] consiste & montrer que, moyennant une con-
dition comme (x), les formes linéaires L, : f — ZfM{0) et &, 1 f =

.f (n) (zn) sont “suffisamment proches” en un sens topoiogiquement adéquat
et comme conséquence, que l'orthogonalité par rapport aux K, implique
Vorthogonalité par rapport aux Ly,.

Il est alors naturel de chercher A savoir ce qui se passe dans la situation
suivante : 0 est maintenant un point du bord de 'ouvert V et on considere
des fonctions f holomorphes dans V, de classe C'° sur V, présentant en-
core la propriété d’étre uniquement déterminées par la donnée des f(*(0),
n € N. Existe-t-il alors encore une notion de rigidité comme celle évoquée
auparavant?

1991 Mathematzcs Subject Classification: 30D60, 46E10.
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